Test \& Embedded Electronics Make it real

: lynx50
 Test board for automotive products

24 channel switch matrix for EOL and impedance measurements.

: 3 lynx 50

INTRODUCTION

Lynx50 is a high speed CAN controlled solid state relay (SSR) multiplexer used to switch differential signals. It is suited to supply multiple boards in a sequential way, or to multiplex CAN control signals, so that test cost and complexity are reduced. Due to its internal design, each DUT pin can be addressed to any of the following contacts:

- Backplane +
- Backplane -
- Bypass from PIN to PIN at the same connector.
- Analog input.
- Digital input.

BLOCK DIAGRAM

FEATURES

- TEXT Board size: $295 \times 100 \mathrm{~mm}$.
- Rackable board for 19 " subracks.
- Expandable when combined with Lynx backplanes.
- CAN and USB controlled.
- Compatible with Lynx Test Scheduler software.
- 40 low voltage solid state relays for addressing up to 43 pins as follows:

1. 15 Pins to Backplane+.
2. 15 Pins to Backplane -
3. 10 Pins for bypassing

- 3 high voltage solid state relays protected with polyswitch for addressing 3 bypassing pins.
- 2 optocoupled digital inputs.
- 10 analog inputs.
- Maximum driving capability: 2A per low voltage relay (VO14642AT-60V).
- Maximum driving capability: 1A per high voltage relay (PVX6012PBF - 400V).
- Main markets: automotive and industrial.
- Power supply ranging from +6.8 V to +30 V .

: lyn ly 50

NOMENCLATURE

- DUT: Device Under Test.
- SSR: Solid State Relay.
- FID: Function Injection Device (device used to activate any DUT IO pin a certain signal with the objective to
- validate the associated function, e.g. digital input, analog input or power output).
- BKP: Backplane.
- DDM: Digital multimeter.
- DI: Digital input.
- Al: Analog input.

APPLICATIONS

Lynx50 is a good choice for the ICT testing of low input/output DUT circuits for any of the markets listed below:

- Automotive.
- Industrial.
- Telecommunications.
- Medical devices.
- PLC emulation.
- Automation.
- Control for visual inspection systems.

APPLICATION EXAMPLES

1 Impedance and short circuit detection between pins.

When a DMM is connected to the backplane, the impedance between DUT pins can be measured. Its flexibility allows the measurement between pins or in regards of the GND pin.

2 Voltage measurements between pins.

When a DMM is connected to the backplane, the voltage between DUT pins can be measured.

: ${ }^{2} \mathrm{lynx} 50$

3 Supply multiple boards in a sequential way.

When a power supply is connected to the backplane we can supply multiple DUT's in a sequential way.

4 External devices activation.

Any external device can be activated to execute a desired action. In the example a DC motor is activated for marking the DUT PCB.

: lynx50

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Tamb = $25{ }^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	$\begin{aligned} & \text { TEST CONDI- } \\ & \text { TION } \end{aligned}$	SYMBOL	VALUE	UNIT
INPUT				
Power supply			12	V
Current consumption			0,65	A
Absolute maximum rating curve lowe voltage relay (*)				
DC or peak AC load voltage (*)		V_{L}	60	V
Load current (DC Only) (*)		I_{L}	2	A
Peak load current (AC/DC) (*)	$\mathrm{t}=10 \mathrm{~ms}$	$\mathrm{I}_{\text {LPK }}$	3.6	A
Output Ron max per channel (*)		$\mathrm{R}_{\text {ON }}$	0.3	Ω
Per each output, the following derating applies (*)	$25^{\circ} \mathrm{C}$	Pdiss	250	mW
Absolute maximum rating curve high voltage relay (**)				
Transient overvoltage protection (**)			600	$\begin{aligned} & \mathrm{V}_{\text {(DC or }} \\ & \mathrm{AC}^{\text {peak })} \end{aligned}$
Operating Voltage (**)			0-300	V (DC)
Maximum Load Current (**)			1.0	A (DC)
Analog Inputs measure range			0 to 30	V
Digital inputs low range			0 to 1	V
Digital inputs high range			2 to 30	V
Ambient temperature range			-25 to +85	${ }^{\circ} \mathrm{C}$

(*) Absolute maximum rating curve low voltage relay (VO14642AT).

(**) Absolute maximum rating curve high voltage relay (PVX6012PBF).

: lynx50

SWITCHING CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Maximum Turn-on time	$\begin{gathered} \mathrm{IF}=10 \mathrm{~mA}, \mathrm{VL}=16 \mathrm{~V}, \\ \mathrm{IL}=100 \mathrm{~mA} \end{gathered}$	$\mathrm{t}_{\text {on }}$	-	370	800	$\mu \mathrm{S}$
Maximum Turn-off time	$\begin{gathered} \mathrm{IF}=10 \mathrm{~mA}, \mathrm{VL}=16 \mathrm{~V}, \\ \mathrm{IL}=100 \mathrm{~mA} \end{gathered}$	$t_{\text {off }}$	-	50	800	$\mu \mathrm{S}$

(*) Absolute maximum rating curve.

SWITCHING CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Maximum Turn-on time	@TA =+25 ${ }^{\circ} \mathrm{C} 7 \mathrm{~ms}$ For 1A, 300 VDC load, 5 mA Control	$\mathrm{t}_{\text {on }}$	-	7	-	ms
Maximum Turn-off time	@TA $\left.=+25^{\circ} \mathrm{C}\right) 1 \mathrm{~ms}$ For 1A, 300 VDC load, 5mA Control	$t_{\text {off }}$	-	1	-	ms

(*) Absolute maximum rating curve.

: ${ }^{2} \mathrm{lynx} 50$

PINOUT

PINOUT: Lynx53 has 4 connectors.

- J1: Connection with the standard interfaces of the Lynx Tester backplane modules.
- J2: Use this connector for injection of primary signals used for the EOL test.
- J3. USB standard connector.
- J4: Use this connector to connect with the DUT.

: ${ }^{2} \mathrm{lynx} 50$

RELAY SWITCH MATRIX

The following table indicates the way the relays are internally connected. Some examples are described below to understand the table:

- J4:1 is a channel which is connected with the DUT.
- U2 connects the J4:1 signal to the pin BKP+ (J1:8).
- U20 connects the J4:6 signal to the pin BKP- (J1:7).
- U38 bypasses the signal from the pin J4:44 to the pin J4:11.
- U48 bypasses the signal from the pin P1:1 to the pin P1:2.
- Al1 is an analog input connected to the pin J4.34.
- DI1 is a digital output connected to the pins J4.44 and J4.11.

ฝ These pins can be used as analog inputs.
\star These pins can be used as digital inputs.

: ${ }^{2} \mathrm{lynx} 50$

CONTROL COMMANDS

- ISO 14229-1 (UDS services) for diagnostic and control.
- ISO 15765-2 (ISO-TP) for transport and network.
- Baud rate: 500 Kb .
- Data link layer: 11 bits for the ID.
- For Tx frames, ID is calculated by adding 1000d to the last 2 digits of the SN of the board.
- For Rx frames, ID is calculated by adding 1100 d to the last 2 digits of the SN of the board.
- DLC: 8 Bytes

: lynx50

DID LIST

\#	DID	Description	Format
1	$\begin{gathered} 0 \times \text { F7 } 01 \\ \text { (WRITE 0x2E) } \end{gathered}$	Enable relay	0x 2E F7 01 1D => 0x1D means 0d29, The relay Number 29. The NumberRelay Parameter goes from 0x01 until 0x2B (0d43). Returns [110, 247, 1,] => OK
2	$\begin{gathered} 0 \times \text { F7 } 00 \\ \text { (WRITE 0x2E) } \end{gathered}$	Disable relay	0×2 E F7 $002 \mathrm{2A}=>0 \times 2 \mathrm{~A}$ means 0 d 42 , The relay Number 42. The NumberRelay Parameter goes from 0x01 until 0x2B (0d43). Returns [110, 247, 0,] => OK
3	0x F7 0B (WRITE)	Turn on the light	To develop
4	0x F7 0C (WRITE)	Turn off the light	To develop
5	$\begin{gathered} \text { 0x F7 } 05 \\ \text { 0x F7 } 06 \\ \text { 0x F7 07 } \\ \text { 0x F7 } 08 \\ \text { 0xF7 09 } \\ \text { 0xF7 0A } \\ \text { (READ 0x22) } \end{gathered}$	Get Analog Input Voltage (Instantaneous) Get Analog Input Voltage (Average) Get Analog Micro Voltage (Instantaneous) Get Analog Micro Voltage (Average) Get Analog Tick Count (Instantaneous) Get Analog Tick Count (Average)	$0 \times 22 \text { F7 } 0505$ Return Example: $\begin{aligned} & {[98,247,5,=>\text { OK + DID }} \\ & 0,0,15,32,5,54,48,242,15,43,5,54,48,196,0 \\ & , 0,15,66,5,60,] \end{aligned}$ Where values mean: [MSB, LSB] for each Input: Input 1, Input 2, Input 3, Input 4, Input 5, Input 6, Input 7, Input 8, Input 9, Input 10 $(48,242)$ would mean: $\left(48 * 256^{\wedge} 1\right)+\left(242 * 256^{\wedge} 0\right)=12.530$ mV

: lynx50

6	$\begin{gathered} \text { 0x F7 } 04 \\ \text { (READ) } \end{gathered}$	Get optoisolated Digital input values	$[98,247,4,3,]$ Where the number means: $\begin{aligned} & 0=\ln 1=>O N, \ln 2=>O N / / 1=\ln 1=>O F F, \ln 2=>O N \\ & 2=\ln 1=>O N, \ln 2=>O F F / / 3=\ln 1=>O F F, \ln 2=>O F F \end{aligned}$
7	$\begin{gathered} 0 x \text { F7 } 02 \\ \text { (READ) } \end{gathered}$	Get Relays State	Return Example: $\begin{aligned} & {[98,247,2,} \\ & 255,255,255,255,255, \\ & 255,255,251,255,255,252,] \end{aligned}$ where Relay states are represented following the sequence: RelayState(0-3), RS(4-7), RS(8-11), RS(12-15), RS(16-19), RS(20- 23), RS(24-27), RS(28-31), RS(32-35), RS(36-39), RS(40-43*) *Relé number 43 (beginning from 0 , otherwise it would be n° 44) is NOT USED. Then its state is returned as 00 but we ought not read it. And the bits correspond to: $251=0 \times 11111011$ => 11 means OFF; 10 means ON Relay(31)=11; Relay(30)=11; Relay(29)=10; Relay(28)=11;

: lynx50

EXAMPLE

$$
\text { - ID: Tx ID: } 1055 \text { (0x41F) / Rx ID: } 1155 \text { (0x483) }
$$

- Goal is to close relay 25
- ID: 0x41F an Message:
DLC
0×04
0×02

CONTACT INFORMATION

e. $(+34) 877911208$

М info@generationrfid.com

Test board for automotive products www.generationrfid.com

